I vincitori della Medaglia Dubrovin 2024

La medaglia Boris Dubrovin è stata creata in memoria del grande matematico Boris Anatolievich Dubrovin, professore alla SISSA dal 1993 al 2019
Immagine
Dubrovin medal

La SISSA è lieta di annunciare i vincitori della Medaglia Dubrovin 2024, un premio speciale che riconosce giovani ricercatori promettenti che hanno dato contributi eccezzionali nel campo della fisica matematica e della geometria.

La medaglia Boris Dubrovin è stata creata in memoria del grande matematico Boris Anatolievich Dubrovin, professore alla SISSA dal 1993 al 2019, la cui attività negli ultimi quarant'anni è stata un punto di riferimento per molti ricercatori del settore. La medaglia viene assegnata ogni due anni dal 2020.  

Gli sponsor dell Medaglia Dubrovin 2024 sono Letters in Mathematical Physics e SISSA Medialab.

 

Vincitori dell'edizione 2024

Soheyla Feyzbakhsh for her impressive results in algebraic geometry, with relevant implications for mathematical physics, in particular string theory. In addition to completing and generalizing Mukai's program on K3 surfaces, she has introduced innovative methods in enumerative geometry, using stability conditions on derived categories, leading to spectacular results for Calabi-Yau 3-folds. In particular, Feyzbakhsh's work establishes that Donaldson- Thomas (DT) theory in any rank is governed by rank one theory, and thus Gromov- Witten (GW) invariants. Moreover, she shows that DT and GW invariants are determined by rank zero DT invariants. The medal also acknowledges the far- reaching impact that these results are going to have on both enumerative algebraic geometry and mathematical physics. 

Pierrick Bousseau for the originality, complexity, and relevance of his remarkable contributions in enumerative algebraic geometry and mirror symmetry, and their profound implications for mathematical physics. These include connections between refined tropical curve counts and higher genus log Gromov-Witten counts of toric surfaces; a proof of the Takahashi conjecture via a new sheaf/curve correspondence; substantial contributions to holomorphic Floer theory and its relation to Donaldson-Thomas theory; the extension of the log-local principle in Gromov-Witten theory to all genera and to Looijenga pairs; and a remarkable advance in the solution of the Gromov-Witten theory of smooth complete intersections.